Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 859
Filter
1.
Int Heart J ; 64(3): 344-351, 2023.
Article in English | MEDLINE | ID: covidwho-20235285

ABSTRACT

Although there is no sign of reinfection, individuals who have a history of coronavirus disease 2019 (COVID-19) may experience prolonged chest discomfort and shortness of breath on exertion. This study aimed to examine the relationship between atherosclerotic coronary plaque structure and COVID-19. This retrospective cohort comprised 1269 consecutive patients who had coronary computed tomographic angiography (CCTA) for suspected coronary artery disease (CAD) between July 2020 and April 2021. The type of atherosclerotic plaque was the primary outcome. Secondary outcomes included the severity of coronary stenosis as determined via the Coronary Artery Disease-Reporting and Data System (CAD-RADS) classification and the coronary artery calcium (CAC) score. To reveal the relationship between the history of COVID-19 and the extent and severity of CAD, propensity score analysis and further multivariate logistic regression analysis were performed. The median age of the study population was 52 years, with 53.5% being male. COVID-19 was present in 337 individuals. The median duration from COVID-19 diagnosis to CCTA extraction was 245 days. The presence of atherosclerotic soft plaque (OR: 2.05, 95% confidence interval [CI]: 1.32-3.11, P = 0.001), mixed plaque (OR: 2.48, 95% CI: 1.39-4.43, P = 0.001), and high-risk plaque (OR: 2.75, 95% CI: 1.98-3.84, P < 0.001) was shown to be linked with the history of COVID-19 on the conditional multivariate regression analysis of the propensity-matched population. However, no statistically significant association was found between the history of COVID-19 and the severity of coronary stenosis based on CAD-RADS and CAC score. We found that the history of COVID-19 might be associated with coronary atherosclerosis assessed via CCTA.


Subject(s)
COVID-19 , Coronary Artery Disease , Coronary Stenosis , Plaque, Atherosclerotic , Humans , Male , Middle Aged , Female , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/epidemiology , Coronary Artery Disease/complications , Plaque, Atherosclerotic/complications , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/epidemiology , Retrospective Studies , Coronary Angiography/methods , COVID-19 Testing , Risk Factors , COVID-19/epidemiology , COVID-19/complications , Coronary Stenosis/diagnostic imaging , Coronary Stenosis/epidemiology , Coronary Stenosis/complications , Computed Tomography Angiography , Predictive Value of Tests
2.
Euro Surveill ; 25(23)2020 06.
Article in English | MEDLINE | ID: covidwho-2313322

ABSTRACT

We reviewed the diagnostic accuracy of SARS-CoV-2 serological tests. Random-effects models yielded a summary sensitivity of 82% for IgM, and 85% for IgG and total antibodies. For specificity, the pooled estimate were 98% for IgM and 99% for IgG and total antibodies. In populations with ≤ 5% of seroconverted individuals, unless the assays have perfect (i.e. 100%) specificity, the positive predictive value would be ≤ 88%. Serological tests should be used for prevalence surveys only in hard-hit areas.


Subject(s)
Antibodies, Viral/blood , Clinical Laboratory Techniques/methods , Coronaviridae Infections/diagnosis , Coronavirus Infections/diagnosis , Coronavirus/immunology , Pneumonia, Viral/diagnosis , Serologic Tests/standards , Severe Acute Respiratory Syndrome/immunology , Betacoronavirus , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/standards , Coronavirus/isolation & purification , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Predictive Value of Tests , SARS-CoV-2 , Sensitivity and Specificity , Serologic Tests/methods , Severe Acute Respiratory Syndrome/blood
3.
Pediatrics ; 151(5)2023 05 01.
Article in English | MEDLINE | ID: covidwho-2312720

ABSTRACT

BACKGROUND: Individual children's hospitals care for a small number of patients with multisystem inflammatory syndrome in children (MIS-C). Administrative databases offer an opportunity to conduct generalizable research; however, identifying patients with MIS-C is challenging. METHODS: We developed and validated algorithms to identify MIS-C hospitalizations in administrative databases. We developed 10 approaches using diagnostic codes and medication billing data and applied them to the Pediatric Health Information System from January 2020 to August 2021. We reviewed medical records at 7 geographically diverse hospitals to compare potential cases of MIS-C identified by algorithms to each participating hospital's list of patients with MIS-C (used for public health reporting). RESULTS: The sites had 245 hospitalizations for MIS-C in 2020 and 358 additional MIS-C hospitalizations through August 2021. One algorithm for the identification of cases in 2020 had a sensitivity of 82%, a low false positive rate of 22%, and a positive predictive value (PPV) of 78%. For hospitalizations in 2021, the sensitivity of the MIS-C diagnosis code was 98% with 84% PPV. CONCLUSION: We developed high-sensitivity algorithms to use for epidemiologic research and high-PPV algorithms for comparative effectiveness research. Accurate algorithms to identify MIS-C hospitalizations can facilitate important research for understanding this novel entity as it evolves during new waves.


Subject(s)
Hospitalization , Medical Records , Child , Humans , Predictive Value of Tests , Algorithms , Databases, Factual , Hospitals, Pediatric , International Classification of Diseases
4.
Eur Radiol ; 33(6): 3867-3877, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2312112

ABSTRACT

OBJECTIVE: COVID-19 infection is a systemic disease with various cardiovascular symptoms and complications. Cardiac MRI with late gadolinium enhancement is the modality of choice for the assessment of myocardial involvement. T1 and T2 mapping can increase diagnostic accuracy and improve further management. Our study aimed to evaluate the different aspects of myocardial damage in cases of COVID-19 infection using cardiac MRI. METHODS: This descriptive retrospective study included 86 cases, with a history of COVID-19 infection confirmed by positive RT-PCR, who met the inclusion criteria. Patients had progressive chest pain or dyspnoea with a suspected underlying cardiac cause, either by an abnormal electrocardiogram or elevated troponin levels. Cardiac MRI was performed with late contrast-enhanced (LGE) imaging, followed by T1 and T2 mapping. RESULTS: Twenty-four patients have elevated hsTnT with a median hsTnT value of 133 ng/L (IQR: 102 to 159 ng/L); normal value < 14 ng/L. Other sixty-two patients showed elevated hsTnI with a median hsTnI value of 1637 ng/L (IQR: 1340 to 2540 ng/L); normal value < 40 ng/L. CMR showed 52 patients with acute myocarditis, 23 with Takotsubo cardiomyopathy, and 11 with myocardial infarction. Invasive coronary angiography was performed only in selected patients. CONCLUSION: Different COVID-19-related cardiac injuries may cause similar clinical symptoms. Cardiac MRI is the modality of choice to differentiate between the different types of myocardial injury such as Takotsubo cardiomyopathy and infection-related cardiomyopathy or even acute coronary syndrome secondary to vasculitis or oxygen-demand mismatch. KEY POINTS: • It is essential to detect early COVID-related cardiac injury using different cardiac biomarkers and cardiac imaging, as it has a significant impact on patient management and outcome. • Cardiac MRI is the modality of choice to differentiate between the different aspects of COVID-related myocardial injury.


Subject(s)
COVID-19 , Myocarditis , Takotsubo Cardiomyopathy , Humans , Retrospective Studies , Contrast Media , COVID-19/complications , Gadolinium , Magnetic Resonance Imaging/methods , Myocarditis/complications , Myocarditis/diagnostic imaging , Predictive Value of Tests , Magnetic Resonance Imaging, Cine/adverse effects
5.
JACC Cardiovasc Imaging ; 16(5): 609-624, 2023 05.
Article in English | MEDLINE | ID: covidwho-2320177

ABSTRACT

BACKGROUND: Myocardial injury in patients with COVID-19 and suspected cardiac involvement is not well understood. OBJECTIVES: The purpose of this study was to characterize myocardial injury in a multicenter cohort of patients with COVID-19 and suspected cardiac involvement referred for cardiac magnetic resonance (CMR). METHODS: This retrospective study consisted of 1,047 patients from 18 international sites with polymerase chain reaction-confirmed COVID-19 infection who underwent CMR. Myocardial injury was characterized as acute myocarditis, nonacute/nonischemic, acute ischemic, and nonacute/ischemic patterns on CMR. RESULTS: In this cohort, 20.9% of patients had nonischemic injury patterns (acute myocarditis: 7.9%; nonacute/nonischemic: 13.0%), and 6.7% of patients had ischemic injury patterns (acute ischemic: 1.9%; nonacute/ischemic: 4.8%). In a univariate analysis, variables associated with acute myocarditis patterns included chest discomfort (OR: 2.00; 95% CI: 1.17-3.40, P = 0.01), abnormal electrocardiogram (ECG) (OR: 1.90; 95% CI: 1.12-3.23; P = 0.02), natriuretic peptide elevation (OR: 2.99; 95% CI: 1.60-5.58; P = 0.0006), and troponin elevation (OR: 4.21; 95% CI: 2.41-7.36; P < 0.0001). Variables associated with acute ischemic patterns included chest discomfort (OR: 3.14; 95% CI: 1.04-9.49; P = 0.04), abnormal ECG (OR: 4.06; 95% CI: 1.10-14.92; P = 0.04), known coronary disease (OR: 33.30; 95% CI: 4.04-274.53; P = 0.001), hospitalization (OR: 4.98; 95% CI: 1.55-16.05; P = 0.007), natriuretic peptide elevation (OR: 4.19; 95% CI: 1.30-13.51; P = 0.02), and troponin elevation (OR: 25.27; 95% CI: 5.55-115.03; P < 0.0001). In a multivariate analysis, troponin elevation was strongly associated with acute myocarditis patterns (OR: 4.98; 95% CI: 1.76-14.05; P = 0.003). CONCLUSIONS: In this multicenter study of patients with COVID-19 with clinical suspicion for cardiac involvement referred for CMR, nonischemic and ischemic patterns were frequent when cardiac symptoms, ECG abnormalities, and cardiac biomarker elevations were present.


Subject(s)
COVID-19 , Coronary Artery Disease , Heart Injuries , Myocarditis , Humans , Myocarditis/pathology , COVID-19/complications , Retrospective Studies , Predictive Value of Tests , Magnetic Resonance Imaging , Troponin , Magnetic Resonance Spectroscopy
7.
Front Immunol ; 13: 977443, 2022.
Article in English | MEDLINE | ID: covidwho-2316329

ABSTRACT

Thrombosis is a major clinical complication of COVID-19 infection. COVID-19 patients show changes in coagulation factors that indicate an important role for the coagulation system in the pathogenesis of COVID-19. However, the multifactorial nature of thrombosis complicates the prediction of thrombotic events based on a single hemostatic variable. We developed and validated a neural net for the prediction of COVID-19-related thrombosis. The neural net was developed based on the hemostatic and general (laboratory) variables of 149 confirmed COVID-19 patients from two cohorts: at the time of hospital admission (cohort 1 including 133 patients) and at ICU admission (cohort 2 including 16 patients). Twenty-six patients suffered from thrombosis during their hospital stay: 19 patients in cohort 1 and 7 patients in cohort 2. The neural net predicts COVID-19 related thrombosis based on C-reactive protein (relative importance 14%), sex (10%), thrombin generation (TG) time-to-tail (10%), α2-Macroglobulin (9%), TG curve width (9%), thrombin-α2-Macroglobulin complexes (9%), plasmin generation lag time (8%), serum IgM (8%), TG lag time (7%), TG time-to-peak (7%), thrombin-antithrombin complexes (5%), and age (5%). This neural net can predict COVID-19-thrombosis at the time of hospital admission with a positive predictive value of 98%-100%.


Subject(s)
COVID-19 , Hemostatics , Thrombosis , Antithrombins , C-Reactive Protein , COVID-19/complications , Fibrinolysin , Humans , Immunoglobulin M , Neural Networks, Computer , Predictive Value of Tests , Thrombin/metabolism , Thrombosis/etiology
8.
Int J Cardiovasc Imaging ; 39(1): 77-85, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2308582

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) pandemic has transformed health systems worldwide. There is conflicting data regarding the degree of cardiovascular involvement following infection. A registry was designed to evaluate the prevalence of echocardiographic abnormalities in adults recovered from COVID-19. We prospectively evaluated 595 participants (mean age 45.5 ± 14.9 years; 50.8% female) from 10 institutions in Argentina and Brazil. Median time between infection and evaluation was two months, and 82.5% of participants were not hospitalized for their infection. Echocardiographic studies were conducted with General Electric equipment; 2DE imaging and global longitudinal strain (GLS) of both ventricles were performed. A total of 61.7% of the participants denied relevant cardiovascular history and 41.8% had prolonged symptoms after resolution of COVID-19 infection. Mean left ventricular ejection fraction (LVEF) was 61.0 ± 5.5% overall. In patients without prior comorbidities, 8.2% had some echocardiographic abnormality: 5.7% had reduced GLS, 3.0% had a LVEF below normal range, and 1.1% had wall motion abnormalities. The right ventricle (RV) was dilated in 1.6% of participants, 3.1% had a reduced GLS, and 0.27% had reduced RV function. Mild pericardial effusion was observed in 0.82% of participants. Male patients were more likely to have new echocardiographic abnormalities (OR 2.82, p = 0.002). Time elapsed since infection resolution (p = 0.245), presence of symptoms (p = 0.927), or history of hospitalization during infection (p = 0.671) did not have any correlation with echocardiographic abnormalities. Cardiovascular abnormalities after COVID-19 infection are rare and usually mild, especially following mild infection, being a low GLS of left and right ventricle, the most common ones in our registry. Post COVID cardiac abnormalities may be more frequent among males.


Subject(s)
COVID-19 , Cardiovascular Abnormalities , Adult , Humans , Male , Female , Middle Aged , Ventricular Function, Left , Stroke Volume , Retrospective Studies , Predictive Value of Tests , Echocardiography/methods , Registries
9.
J Clin Ultrasound ; 51(4): 613-621, 2023 May.
Article in English | MEDLINE | ID: covidwho-2301433

ABSTRACT

INTRODUCTION: Cardiac injury is commonly reported in COVID-19 patients, resulting associated to pre-existing cardiovascular disease, disease severity, and unfavorable outcome. Aim is to report cardiac magnetic resonance (CMR) findings in patients with myocarditis-like syndrome during the acute phase of SARS-CoV-2 infection (AMCovS) and post-acute phase (cPACS). METHODS: Between September 2020 and January 2022, 39 consecutive patients (24 males, 58%) were referred to our department to perform a CMR for the suspicion of myocarditis related to AMCovS (n = 17) and cPACS (n = 22) at multimodality evaluation (clinical, laboratory, ECG, and echocardiography). CMR was performed for the assessment of volume, function, edema and fibrosis with standard sequences and mapping techniques. CMR diagnosis and the extension and amount of CMR alterations were recorded. RESULTS: Patients with suspected myocarditis in acute and post-COVID settings were mainly men (10 (59%) and 12 (54.5%), respectively) with older age in AMCovS (58 [48-64]) compared to cPACS (38 [26-53]). Myocarditis was confirmed by CMR in most of cases: 53% of AMCovS and 50% of cPACS with negligible LGE burden (3 [IQR, 1-5] % and 2 [IQR, 1-4] %, respectively). Myocardial infarction was identified in 4/17 (24%) patients with AMCovS. Cardiomyopathies were identified in 12% (3/17) and 27% (6/22) of patients with AMCovS and cPACS, including DCM, HCM and mitral valve prolapse. CONCLUSIONS: In patients with acute and post-acute COVID-19 related suspected myocarditis, CMR improves diagnostic accuracy characterizing ischemic and non-ischemic injury and unraveling subclinical cardiomyopathies.


Subject(s)
COVID-19 , Cardiomyopathies , Myocarditis , Male , Humans , Female , Myocarditis/complications , Myocarditis/diagnostic imaging , COVID-19/complications , Predictive Value of Tests , SARS-CoV-2 , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Contrast Media
10.
Int J Cardiovasc Imaging ; 39(4): 821-830, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2301369

ABSTRACT

The coronavirus disease of 2019 (COVID-19)-related myocardial injury is an increasingly recognized complication and cardiac magnetic resonance imaging (MRI) has become the most commonly used non-invasive imaging technique for myocardial involvement. This study aims to assess myocardial structure by T2*-mapping which is a non-invasive gold-standard imaging tool for the assessment of cardiac iron deposition in patients with COVID-19 pneumonia without significant cardiac symptoms. Twenty-five patients with COVID-19 pneumonia and 20 healthy subjects were prospectively enrolled.Cardiac volume and function parameters, myocardial native-T1, and T2*-mapping were measured. The association of serum ferritin level and myocardial mapping was analyzed. There was no difference in terms of cardiac volume and function parameters. The T2*-mapping values were lower in patients with COVID-19 compared to controls (35.37 [IQR 31.67-41.20] ms vs. 43.98 [IQR 41.97-46.88] ms; p < 0.0001), while no significant difference was found in terms of native-T1 mapping value(p = 0.701). There was a positive correlation with T2*mapping and native-T1 mapping values (r = 0.522, p = 0.007) and negative correlation with serum ferritin values (r = - 0.653, p = 0.000), while no correlation between cardiac native-T1 mapping and serum ferritin level. Negative correlation between serum ferritin level and T2*-mapping values in COVID-19 patients may provide a non-contrast-enhanced alternative to assess tissue structural changes in patients with COVID-19. T2*-mapping may provide a non-contrast-enhanced alternative to assess tissue alterations in patients with COVID-19. Adding T2*-mapping cardiac MRI in patients with myocardial pathologies would improve the revealing of underlying mechanisms. Further in vivo and ex vivo animal or human studies designed with larger patient cohorts should be planned.


Subject(s)
COVID-19 , Humans , COVID-19/complications , Predictive Value of Tests , Magnetic Resonance Imaging/methods , Myocardium/pathology , Magnetic Resonance Spectroscopy , Ferritins , Magnetic Resonance Imaging, Cine/methods , Contrast Media
11.
Arq Bras Cardiol ; 120(4): e20220672, 2023 04 07.
Article in English, Portuguese | MEDLINE | ID: covidwho-2299408
12.
Gut ; 72(7): 1319-1325, 2023 07.
Article in English | MEDLINE | ID: covidwho-2304817

ABSTRACT

OBJECTIVE: To assess the impact of delayed invitation on screen-detected and interval colorectal cancers (CRC) within a faecal immunochemical testing (FIT)-based CRC screening programme. DESIGN: All individuals that participated in 2017 and 2018 with a negative FIT and were eligible for CRC screening in 2019 and 2020 were included using individual-level data. Multivariable logistic regression analyses were used to assess the association between either the different time periods (ie, 'before', 'during' and 'after' the first COVID-19 wave) or the invitation interval on screen-detected and interval CRCs. RESULTS: Positive predictive value for advanced neoplasia (AN) was slightly lower during (OR=0.91) and after (OR=0.95) the first COVID-19 wave, but no significant difference was observed for the different invitation intervals. Out of all individuals that previously tested negative, 84 (0.004%) had an interval CRC beyond the 24 months since their last invitation. The time period of invitation as well as the extended invitation interval was not associated with detection rates for AN and interval CRC rate. CONCLUSION: The impact of the first COVID-19 wave on screening yield was modest. A very small proportion of the FIT negatives had an interval CRC possibly due to an extended interval, which potentially could have been prevented if they had received the invitation earlier. Nonetheless, no increase in interval CRC rate was observed, indicating that an extended invitation interval up to 30 months had no negative impact on the performance of the CRC screening programme and a modest extension of the invitation interval seems an appropriate intervention.


Subject(s)
COVID-19 , Colorectal Neoplasms , Humans , Early Detection of Cancer , COVID-19/diagnosis , COVID-19/epidemiology , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/prevention & control , Predictive Value of Tests , Occult Blood , Mass Screening , Colonoscopy
13.
Echocardiography ; 40(6): 464-474, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2292878

ABSTRACT

BACKGROUND: Cardiovascular sequelae may occur in patients recovered from coronavirus disease 2019 (COVID-19). Recent studies have detected a considerable incidence of subclinical myocardial dysfunction-assessed with speckle-tracking echocardiography-and of long-COVID symptoms in these patients. This study aimed to define the long-term prognostic role of subclinical myocardial dysfunction and long-COVID condition in patients recovered from COVID-19 pneumonia. METHODS: We prospectively followed up 110 patients hospitalized at our institution due to COVID-19 pneumonia in April 2020 and then recovered from SARS-CoV-2 infection. A 7-month clinical and echocardiographic evaluation was performed, followed by a 21-month clinical follow-up. The primary outcome was major adverse cardiovascular events (MACE), a composite of myocardial infarction, stroke, heart failure hospitalization, and all-cause mortality. RESULTS: A subclinical myocardial dysfunction-defined as an impairment of left ventricular global longitudinal strain (≥-18%)-was identified at a 7-month follow-up in 37 patients (34%), was associated with an increased risk of long-term MACE with a good discriminative power (area under the curve: .73) and resulted in a strong independent predictor of extended MACE in multivariate regression analyses. Long-COVID condition was not associated with a worse long-term prognosis, instead. CONCLUSIONS: In patients recovered from COVID-19 pneumonia, a subclinical myocardial dysfunction is present in one-third of the whole population at 7-month follow-up and is associated with a higher risk of MACE at long-term follow-up. Speckle-tracking echocardiography is a promising tool to optimize the risk-stratification in patients recovered from COVID-19 pneumonia, while the definition of a long-COVID condition has no prognostic relevance.


Subject(s)
COVID-19 , Ventricular Dysfunction, Left , Humans , Risk Factors , Post-Acute COVID-19 Syndrome , COVID-19/complications , Predictive Value of Tests , SARS-CoV-2 , Prognosis , Ventricular Dysfunction, Left/complications
14.
PLoS One ; 18(3): e0282394, 2023.
Article in English | MEDLINE | ID: covidwho-2287689

ABSTRACT

BACKGROUND: Long-term symptoms are frequent after coronavirus disease 2019 (COVID-19). We studied the prevalence of post-acute myocardial scar on cardiac magnetic resonance imaging (CMR) in patients hospitalized due to COVID-19 and its association with long-term symptoms. MATERIALS AND METHODS: In this prospective observational single-center study, 95 formerly hospitalized COVID-19 patients underwent CMR imaging at the median of 9 months after acute COVID-19. In addition, 43 control subjects were imaged. Myocardial scar characteristic of myocardial infarction or myocarditis were noted from late gadolinium enhancement images (LGE). Patient symptoms were screened using a questionnaire. Data are presented as mean ± standard deviation or median (interquartile range). RESULTS: The presence of any LGE was higher in COVID-19 patients (66% vs. 37%, p<0.01) as was the presence of LGE suggestive of previous myocarditis (29% vs. 9%, p = 0.01). The prevalence of ischemic scar was comparable (8% vs. 2%, p = 0.13). Only two COVID-19 patients (7%) had myocarditis scar combined with left ventricular dysfunction (EF <50%). Myocardial edema was not detected in any participant. The need for intensive care unit (ICU) treatment during initial hospitalization was comparable in patients with and without myocarditis scar (47% vs. 67%, p = 0.44). Dyspnea, chest pain, and arrhythmias were prevalent in COVID-19 patients at follow-up (64%, 31%, and 41%, respectively) but not associated with myocarditis scar on CMR. CONCLUSIONS: Myocardial scar suggestive of possible previous myocarditis was detected in almost one-third of hospital-treated COVID-19 patients. It was not associated with the need for ICU treatment, greater symptomatic burden, or ventricular dysfunction at 9 months follow-up. Thus, post-acute myocarditis scar on COVID-19 patients seems to be a subclinical imaging finding and does not commonly require further clinical evaluation.


Subject(s)
COVID-19 , Heart Injuries , Myocarditis , Humans , Myocarditis/complications , Contrast Media , Cicatrix/complications , Ventricular Function, Left , COVID-19/complications , Gadolinium , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Heart Injuries/complications , Magnetic Resonance Imaging, Cine/methods , Predictive Value of Tests
15.
Int J Cardiovasc Imaging ; 39(6): 1115-1122, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2261971

ABSTRACT

BACKGROUND: Post-acute sequelae of SARS-CoV-2 (PASC) have emerged as a major health issue in patients who have previously been infected with Covid-19 virus. PURPOSE: we aimed at the assessment of functional outcomes in post Covid-19 patients with persistent dyspnea using a multidisciplinary approach including clinical assessment, laboratory investigations, exercise ECG, and different echo-Doppler modalities, including left atrial functions. METHODS: The current observational randomized controlled study conducted on 60- patients one month after recovery from Covid-19 infection presented with persistent dyspnea compared to 30 healthy volunteers. All participants were subjected to evaluation of dyspnea by different scores, laboratory investigations, stress ECG, and echo-Doppler examination to measure LV dimensions, volumes, systolic and diastolic functions by M-mode, 2D, and tissue Doppler imaging in addition to 2-D speckle tacking LA strain. RESULTS: Post Covid-19 patients had persistent elevation of inflammatory markers, low functional capacity (evidenced by a higher NYHA class, m MRC score, PCFS scale) and decreased METs by stress ECG compared to control group. Post Covid-19 patients showed LV diastolic dysfunction and impairment of 2D-STE LA functions compared to control group. We found negative correlations between LA strain with NYHA class, mMRC scale, LAVI, ESR and CRP; meanwhile, there were significant positive correlations between LA strain with exercise duration and METs. CONCLUSION: post Covid patients presented with persistent dyspnea demonstrated low functional capacity evidenced by different scores and stress ECG. Moreover, patients with post Covid syndrome showed elevated inflammatory biomarkers, LV diastolic dysfunction in addition to impaired LA strain functions. Impairment of LA strain was closely correlated to different functional scores, inflammatory biomarkers, exercise duration, and METs suggesting that these could to be the possible etiologies for the persistence of post Covid symptoms.


Subject(s)
COVID-19 , Ventricular Dysfunction, Left , Humans , Predictive Value of Tests , COVID-19/complications , SARS-CoV-2 , Atrial Function, Left , Heart Atria
16.
Kardiol Pol ; 81(5): 463-471, 2023.
Article in English | MEDLINE | ID: covidwho-2261775

ABSTRACT

BACKGROUND: COVID-19 is a great medical challenge as it provokes acute respiratory distress and has pulmonary manifestations and cardiovascular (CV) consequences. AIMS: This study compared cardiac injury in COVID-19 myocarditis patients with non-COVID-19 myocarditis patients. METHODS: Patients who recovered from COVID-19 were scheduled for cardiovascular magnetic resonance (CMR) owing to clinical myocarditis suspicion. The retrospective non-COVID-19 myocarditis (2018-2019) group was enrolled (n = 221 patients). All patients underwent contrast-enhanced CMR, the conventional myocarditis protocol, and late gadolinium enhancement (LGE). The COVID study group included 552 patients at a mean (standard deviation [SD]) age of 45.9 (12.6) years. RESULTS: CMR assessment confirmed myocarditis-like LGE in 46% of the cases (68.5% of the segments with LGE <25% transmural extent), left ventricular (LV) dilatation in 10%, and systolic dysfunction in 16% of cases. The COVID-19 myocarditis group showed a smaller median (interquartile range [IQR]) LV LGE (4.4% [2.9%-8.1%] vs. 5.9% [4.4%-11.8%]; P <0.001), lower LV end-diastolic volume (144.6 [125.5-178] ml vs. 162.8 [136.6-194] ml; P <0.001), limited functional consequence (left ventricular ejection fraction, 59% [54.1%-65%] vs. 58% [52%-63%]; P = 0.01), and a higher rate of pericarditis (13.6% vs. 6%; P = 0.03) compared to non-COVID-19 myocarditis. The COVID-19-induced injury was more frequent in septal segments (2, 3, 14), and non-COVID-19 myocarditis showed higher affinity to lateral wall segments (P <0.01). Neither obesity nor age was associated with LV injury or remodeling in subjects with COVID-19 myocarditis. CONCLUSIONS: COVID-19-induced myocarditis is associated with minor LV injury with a significantly more frequent septal pattern and a higher pericarditis rate than non-COVID-19 myocarditis.


Subject(s)
COVID-19 , Myocarditis , Pericarditis , Humans , Middle Aged , Myocarditis/etiology , Myocarditis/complications , Contrast Media , Stroke Volume , Gadolinium , Ventricular Function, Left , Retrospective Studies , Magnetic Resonance Imaging, Cine/methods , COVID-19/complications , Myocardium/pathology , Magnetic Resonance Spectroscopy , Predictive Value of Tests
17.
Respir Res ; 24(1): 59, 2023 Feb 21.
Article in English | MEDLINE | ID: covidwho-2261511

ABSTRACT

OBJECTIVES: To investigate whether COVID-19 patients with pulmonary embolism had higher mortality and assess the utility of D-dimer in predicting acute pulmonary embolism. PATIENTS AND METHODS: Using the National Collaborative COVID-19 retrospective cohort, a cohort of hospitalized COVID-19 patients was studied to compare 90-day mortality and intubation outcomes in patients with and without pulmonary embolism in a multivariable cox regression analysis. The secondary measured outcomes in 1:4 propensity score-matched analysis included length of stay, chest pain incidence, heart rate, history of pulmonary embolism or DVT, and admission laboratory parameters. RESULTS: Among 31,500 hospitalized COVID-19 patients, 1117 (3.5%) patients were diagnosed with acute pulmonary embolism. Patients with acute pulmonary embolism were noted to have higher mortality (23.6% vs.12.8%; adjusted Hazard Ratio (aHR) = 1.36, 95% CI [1.20-1.55]), and intubation rates (17.6% vs. 9.3%, aHR = 1.38[1.18-1.61]). Pulmonary embolism patients had higher admission D-dimer FEU (Odds Ratio(OR) = 1.13; 95%CI [1.1-1.15]). As the D-dimer value increased, the specificity, positive predictive value, and accuracy of the test increased; however, sensitivity decreased (AUC 0.70). At cut-off D-dimer FEU 1.8 mcg/ml, the test had clinical utility (accuracy 70%) in predicting pulmonary embolism. Patients with acute pulmonary embolism had a higher incidence of chest pain and history of pulmonary embolism or deep vein thrombosis. CONCLUSIONS: Acute pulmonary embolism is associated with worse mortality and morbidity outcomes in COVID-19. We present D-dimer as a predictive risk tool in the form of a clinical calculator for the diagnosis of acute pulmonary embolism in COVID-19.


Subject(s)
COVID-19 , Pulmonary Embolism , Humans , Retrospective Studies , Pulmonary Embolism/diagnosis , Predictive Value of Tests , Chest Pain
19.
Int J Cardiovasc Imaging ; 39(5): 1031-1043, 2023 May.
Article in English | MEDLINE | ID: covidwho-2259884

ABSTRACT

To evaluate clinical and cardiac magnetic resonance (CMR) short-term follow-up (FU) in patients with vaccine-associated myocarditis, pericarditis or myo-pericarditis (VAMP) following COVID-19 vaccination. We retrospectively analyzed 44 patients (2 women, mean age: 31.7 ± 15.1 years) with clinical and CMR manifestations of VAMP, recruited from 13 large tertiary national centers. Inclusion criteria were troponin raise, interval between the last vaccination dose and onset of symptoms < 25 days and symptoms-to-CMR < 20 days. 29/44 patients underwent a short-term FU-CMR with a median time of 3.3 months. Ventricular volumes and CMR findings of cardiac injury were collected in all exams. Mean interval between the last vaccination dose and the onset of symptoms was 6.2 ± 5.6 days. 30/44 patients received a vaccination with Comirnaty, 12/44 with Spikevax, 1/44 with Vaxzevria and 1/44 with Janssen (18 after the first dose of vaccine, 20 after the second and 6 after the "booster" dose). Chest pain was the most frequent symptom (41/44), followed by fever (29/44), myalgia (17/44), dyspnea (13/44) and palpitations (11/44). At baseline, left ventricular ejection fraction (LV-EF) was reduced in 7 patients; wall motion abnormalities have been detected in 10. Myocardial edema was found in 35 (79.5%) and LGE in 40 (90.9%) patients. Clinical FU revealed symptoms persistence in 8/44 patients. At FU-CMR, LV-EF was reduced only in 2 patients, myocardial edema was present in 8/29 patients and LGE in 26/29. VAMPs appear to have a mild clinical presentation, with self-limiting course and resolution of CMR signs of active inflammation at short-term follow-up in most of the cases.


Subject(s)
COVID-19 , Myocarditis , Pericarditis , Humans , Female , Adolescent , Young Adult , Adult , Middle Aged , Myocarditis/etiology , Myocarditis/complications , COVID-19 Vaccines/adverse effects , Stroke Volume , Retrospective Studies , Ventricular Function, Left , Magnetic Resonance Imaging, Cine , COVID-19/complications , Predictive Value of Tests , Magnetic Resonance Imaging , Pericarditis/etiology , Pericarditis/complications
20.
Open Heart ; 10(1)2023 02.
Article in English | MEDLINE | ID: covidwho-2278494

ABSTRACT

BACKGROUND: Long COVID is associated with multiple symptoms and impairment in multiple organs. Cross-sectional studies have reported cardiac impairment to varying degrees by varying methodologies. Using cardiac MR (CMR), we investigated a 12-month trajectory of abnormalities in Long COVID. OBJECTIVES: To investigate cardiac abnormalities 1-year post-SARS-CoV-2 infection. METHODS: 534 individuals with Long COVID underwent CMR (T1/T2 mapping, cardiac mass, volumes, function and strain) and multiorgan MRI at 6 months (IQR 4.3-7.3) since first post-COVID-19 symptoms. 330 were rescanned at 12.6 (IQR 11.4-14.2) months if abnormal baseline findings were reported. Symptoms, questionnaires and blood samples were collected at both time points. CMR abnormalities were defined as ≥1 of low left or right ventricular ejection fraction (LVEF), high left or right ventricular end diastolic volume, low 3D left ventricular global longitudinal strain (GLS), or elevated native T1 in ≥3 cardiac segments. Significant change over time was reported by comparison with 92 healthy controls. RESULTS: Technical success of multiorgan and CMR assessment in non-acute settings was 99.1% and 99.6% at baseline, and 98.3% and 98.8% at follow-up. Of individuals with Long COVID, 102/534 (19%) had CMR abnormalities at baseline; 71/102 had complete paired data at 12 months. Of those, 58% presented with ongoing CMR abnormalities at 12 months. High sensitivity cardiac troponin I and B-type natriuretic peptide were not predictive of CMR findings, symptoms or clinical outcomes. At baseline, low LVEF was associated with persistent CMR abnormality, abnormal GLS associated with low quality of life and abnormal T1 in at least three segments was associated with better clinical outcomes at 12 months. CONCLUSION: CMR abnormalities (left entricular or right ventricular dysfunction/dilatation and/or abnormal T1mapping), occurred in one in five individuals with Long COVID at 6 months, persisting in over half of those at 12 months. Cardiac-related blood biomarkers could not identify CMR abnormalities in Long COVID. TRIAL REGISTRATION NUMBER: NCT04369807.


Subject(s)
COVID-19 , Humans , Stroke Volume , Post-Acute COVID-19 Syndrome , Cross-Sectional Studies , Quality of Life , Predictive Value of Tests , SARS-CoV-2 , Ventricular Function, Right
SELECTION OF CITATIONS
SEARCH DETAIL